

Material Studies Status

Greg, Sunny, Eva, Pasha, Giulia, YKK,...

- Simulated large sample Drell-Yan
 - ➤ With 4.6% X₀ Cu instead of Si layer
 - ➤ Crosschecked with (Si) \rightarrow 5.5% $X_0!$
- Need many samples with different materials
 - Carbon, Silicon, Copper, and Lead
 - >3%, 6%, and 9% X₀ each
 - > 500k events per sample
 - ➤ Need 5.5M events → need fast simulation
- Getting fast simulation
 - Only need e's and γ's
 - No jet fragmentation (MSTJ(1)=0)
 - Turn off silicon hit simulation
 - simulateSvx set f
 - > 13s / event → 0.7s / event
 - > 170 kb / event \rightarrow 12 kb / event

Numbers

- Looking at E/P ratio (0.9:1.1)/(1.5:2.5)
 - > No Layer (full MC) : $5.68 \pm 0.08\% X_0$
 - ➤ No Layer (fast MC) : $5.71 \pm 0.05\% X_0$

	+3%X ₀	+6%X ₀	+9%X ₀
Carbon (fast)	4.54 ± 0.06		
Si (full MC)	4.68 ± 0.08	3.66 ± 0.06	
Si (fast MC)	4.53 ± 0.06	3.59 ± 0.05	2.97 ± 0.04
Cu (fast MC)	4.51 ± 0.06	3.51 ± 0.05	2.77 ± 0.04
Pb (fast MC)	4.22 ± 0.06	3.38 ± 0.05	2.77 ± 0.04

Plots

What next...

- Type of material dependence
 - Approx. cross section for high E brems.

$$\frac{d\mathbf{s}}{dk} = \frac{A}{X_0 N_A k} (\frac{4}{3} - \frac{4}{3} y + y^2)$$

- k: energy of photon
- > y= k/E
- A: atomic number
- So E/P is sensitive to X₀ and type of material
 - Good news: need fewer X₀ of copper
 - Will agree better with dE/dx
 - ightharpoonup Estimate: 4.5% \pm 1.5% X_0 of Cu
 - ➤ A. Korn (dE/dx):
 - .25 \pm 0.1 cm Si ≈ 5.4% \pm 3.1% X_0 Cu